高远

全屏阅读

2023-03-14 14:03:17 作者: 所属分类:教师, 研究团队 阅读: 5,173 views

gaoyuan

基本信息

高远,1992年7月生,北京人,华中科技大学机械学院教授,博士生导师。本科毕业于上海交通大学机械工程及自动化专业,博士毕业于弗吉尼亚大学机械与航空工程专业,曾在伊利诺伊大学香槟分校航空工程系与贝克曼先进科学技术研究院进行博士后阶段的研究,2022年入选国家级海外高层次(青年)、华中卓越学者人才计划,2018年获国家优秀自费留学生奖学金,并获得美国计算力学大会奖等国际学术会议奖项。研究领域包括:声子传热与电子器件散热计算设计、纳流道抗冲击结构计算设计与纳米限域机制、基于前端聚合的先进高分子复合材料制造方法、功能微纳结构的计算设计、先进理论建模方法等,在《Nature》(自然)、《PNAS》(美国科学院院刊)、《Phys. Rev. Lett.》(物理评论快报)、《Adv. Mater》(先进材料)、《Matter》、《Device》、《Nano Letters》、《ACS Nano》等期刊发表论文40余篇,主持国家优秀青年基金(海外)、国家自然科学基金面上项目、武汉市创新项目等多个科研项目,长期担任多个领域重要期刊的审稿人,主持多个国际会议关于先进制造领域的分会场。

研究方向

研究方向主要为微纳尺度的多物理场的全新耦合机制,基于新机制设计功能微纳结构与材料,优化材料的制造方法。主要分为以下方向:

1.纳流道抗冲击结构计算设计与纳米限域机理

将常见液体限制于纳米尺度(1-100nm)的孔道内能够使其获得显著不同于块体形态下的多方面性质,包括输运、力学、热力学、化学性质等,以上性质能够被用于设计用于极端探测、质子输运、能量转化的功能器件。其中,疏水纳米孔与电解液构成的系统在50-100MPa的压强加载下能通过输运过程耗散机械能,效率可达100J/g,与基于传统力学坍塌机制的吸能结构相当,但理论上具有可复原、可重复使用的优势。纳米限域作用下的固体-液体相互作用以及流体输运机制是纳流道抗冲击结构的关键科学问题,本研究方向旨在通过分子动力学、朗之万动力学等理论计算研究上述关键机理,用于纳流道抗冲击结构的设计,并结合实验提升抗冲击结构的性能与可重用性。

该方向部分相关论文

(1) Gao, Y., Li, M., et al. (2023). A Nanoconfined Water–Ion Coordination Network for Flexible Energy‐Dissipation Devices. Advanced Materials, 35(42), 2303759. (IF: 29.4)

(2) Gao, Y., Li, M., et al. (2022). Anomalous Solid-Like Necking of Confined Water Outflow in Hydrophobic Nanopores. Matter, 5(1), 266-280. (IF: 17.3)

(3) Gao, Y., Li, M., et al. (2020). Spontaneous Outflow Efficiency of Confined Liquid in Hydrophobic Nanopores. Proceedings of the National Academy of Sciences, 117(41), 25246-25253. (IF: 9.4)

 

2.微纳电子器件热管理计算与声子传热机理

新一代电子设备普遍具有微小化、高度集成化的特点,高功率与高热流密度成为了散热问题的挑战。热界面材料是散热的重要手段,导热性质优良的纳米材料在热界面材料中拥有较大的应用前景。然而,由装配过程、热应力、外部环境等因素带来的力学效应可能影响基于纳米材料的热界面材料的性能。本方向在于理论、系统地探究力学效应对于纳米材料、结构传热性质的作用机理,为设计力学可调节传热结构提供理论支持,为新一代电子器件的散热提供新方案。

该方向部分相关论文

(1) Yu, X., et al. (2024). Mechanical Regulation to Interfacial Thermal Transport in GaN/Diamond Heterostructures for Thermal Switch. Nanoscale Horizons, 9(9), 1557-1567. (IF: 8.0)

(2) Gao, Y., et al. (2024). Reorientation of Hydrogen Bonds Renders Unusual Enhancement in Thermal Transport of Water in Nanoconfined Environments. Nano Letters24(17), 5379-5386. (IF: 9.6)

(3) Wang, F., et al. (2024). Lateral Heterostructure Formed by Highly Thermally Conductive Fluorinated Graphene for Efficient Device Thermal Management. Advanced Science, 2401586. (IF: 14.3)

 

3.高分子复合材料制造的理论计算

热固性高分子具有轻质量、高力学强度、耐高温、耐腐蚀的优点,其传统制备方法基于高温、高压下的整体聚合,其缺点在于耗能、耗时。相比之下, 基于前端聚合(Frontal Polymerization)的先进制备技术在耗能、耗时方面可节省2-3个数量级。技术的原理是将局部反应的放热通过导热与对流散布至整个系统从而进一步引导聚合,即体系内传热-化学-流体力学的耦合机制。本研究方向的重点在于探索上述耦合机制,对制造过程精确建模,推导理论预测制造过程的关键指标,为进一步优化制造技术提供理论支持。

该方向部分相关论文

(1) Paul, J. E., Gao, Y., et al. (2024). Controlled Patterning of Crystalline Domains by Frontal Polymerization. Nature, 1-6. (IF: 50.5)

(2) Gao, Y., Paul, J. E., et al (2023). Buoyancy-Induced Convection Driven by Frontal Polymerization. Physical Review Letters130(2), 028101. (IF: 8.1)

(3) Gao, Y., Dearborn, M. A., et al. (2021). Controllable Frontal Polymerization and Spontaneous Patterning Enabled by Phase‐Changing Particles. Small17(42), 2102217. (IF: 13.3)

 

部分代表作

    1. Justine E. Paul, Yuan Gao, Yoo Kyung Go, Luis E Rodriguez Koett, et al. “Controlled Patterning of Crystalline Domains by Frontal Polymerization”, Nature. 2024, 1-6
    2. Yuan Gao, Justine E. Paul, Manxin Chen, et al. “ Fluid Convection Driven by Surface Tension during Free-Surface Frontal Polymerization”, Mech. Mater. 2024, 194, 104987 (封面,总编约稿)
    3. Yuan Gao, Ziqiao Chen, Yue Zhang, Yanwei Wen, Xiaotong Yu, Bin Shan, Baoxing Xu, and Rong Chen. “Reorientation of Hydrogen Bonds Renders Unusual Enhancement in Thermal Transport of Water in Nanoconfined Environment”, Nano Lett., 24, 5379-5386
    4. Xiaotong Yu, Yifan Li, Renjie He, Yanwei Wen, Rong Chen, Baoxing Xu, and Yuan Gao, “Mechanical Regulation to Interfacial Thermal Transport in GaN/Diamond Heterostructures for Thermal Switch”, Nanoscale Horiz., 9, 1557-1567.
    5. Yuan Gao,Mingzhe Li, Yue Zhang, Weiyi Lu, and Baoxing Xu, “Spontaneous Outflow Efficiency of Confined Liquid in Hydrophobic Nanopores“, Proc. Natl. Acad. Sci. 2020, 117, 25246.
    6. Yuan Gao, Justine E. Paul, Manxin. Chen, Liu Hong, Leonardo P. Chamorro, Nancy R. Sottos, and Philippe H. Geubelle “Buoyancy-Induced Convection Driven by Frontal Polymerization.“, Phys. Rev. Lett. 2023, 130, 028101.
    7. Yuan Gao, Mingzhe Li, Haozhe Zhang, Yue Zhang, Weiyi Lu, and Baoxing Xu. "Anomalous solid-like necking of confined water outflow in hydrophobic nanopores.", Matter. 2022, 5, 266.
    8. Yuan Gao, Mengtian Yin, Haozhe Zhang, and Baoxing Xu. "Electrically Suppressed Outflow of Confined Liquid in Hydrophobic Nanopores. "ACS Nano. 2022,16, 9420.
    9. Yuan Gao, Baoxing Xu. "van der Waals Graphene Kirigami Heterostructure for Strain-Controlled Thermal Transparency. "ACS Nano. 2018, 12, 11254.
    10. Yuan Gao, Qingchang Liu, and Baoxing Xu. "Lattice Mismatch Dominant Yet Mechanically Tunable Thermal Conductivity in Bilayer Heterostructures."ACS Nano. 2016, 10, 5431.
    11. Yuan Gao, Mason A. Dearborn, Julie Hemmer, Zhao Wang, Aaron P. Esser‐Kahn, and Philippe H. Geubelle. " Controllable Frontal Polymerization and Spontaneous Patterning Enabled by Phase‐Changing Particles. "Small. 2021, 17, 2102217.
    12. Yuan Gao, Yue Zhang, and Baoxing Xu. "Confined Water-Assistant Thermal Response of a Graphene Oxide Heterostructure and Its Enabled Mechanical Sensors for Load Sensing and Mode Differentiation. "ACS Appl. Mater. Interfaces. 2019, 11, 19596.
    13. Yuan Gao, Baoxing Xu. "On the Generalized Thermal Conductance Characterizations of Mixed One-Dimensional–Two-Dimensional van der Waals Heterostructures and Their Implication for Pressure Sensors. "ACS Appl. Mater. Interfaces. 2018, 10, 14221.
    14. Yuan Gao, Baoxing Xu. "Controllable Interface Junction, In-Plane Heterostructures Capable of Mechanically Mediating On-Demand Asymmetry of Thermal Transports."ACS Appl. Mater. Interfaces. 2017, 9, 34506.
    15. Yuan Gao, Weizhu Yang, and Baoxing Xu. "Unusual Thermal Conductivity Behavior of Serpentine Graphene Nanoribbons Under Tensile Strain."Carbon. 2016, 96 513-521.
    16. Yuan Gao, Weizhu Yang, and Baoxing Xu. "Tailoring Auxetic and Contractile Graphene to Achieve Interface Structures with Fully Mechanically Controllable Thermal Transports."Adv. Mater. Interfaces. 2017, 4, 1700278.
    17. Yuan Gao, Luis E. Rodriguez Koett, Julie Hemmer, Tianyu Gai, Nil A. Parikh, Nancy R. Sottos, and Philippe H. Geubelle. " Frontal Polymerization of Thin Layers on a Thermally Insulating Substrate. "ACS Appl. Polym. Mater. 2022, 4, 4919.
    18. Yuan Gao, Sarah Li, Jin-Young Kim, Imogen Hoffman, Sagar K. Vyas, John A. Pojman, and Philippe H. Geubelle."Anisotropic Frontal Polymerization in a Model Resin–Copper Composite. " Chaos. 2022, 32, 013109.
    19. Yuan Gao, Fahima Shaon, Aditya Kumar, Samuel Bynum, Daniel Gary, David Sharp, John A. Pojman, and Philippe H. Geubelle. "Rapid Frontal Polymerization Achieved with Thermally Conductive Metal Strips."Chaos. 2021, 31, 073113.
    20. Yuan Gao, Baoxing Xu. " Probing Thermal Conductivity of Fullerene C60 Hosting a Single Water Molecule. "J. Phys. Chem. C. 2015, 35, 20466.
    21. Yuan Gao, Mason A. Dearborn, Sagar Vyas, Aditya Kumar, Julie Hemmer, Zhao Wang, Qiong Wu, Omar Alshangiti, Jeffrey S. Moore, Aaron P. Esser-Kahn, and Philippe H. Geubelle. " Manipulating Frontal Polymerization and Instabilities with Phase-Changing Microparticles."J. Phys. Chem. B. 2021, 125, 7537.

完整列表(实时更新):https://scholar.google.com/citations?user=7hoWf0MAAAAJ

主页:https://www.researchgate.net/profile/Yuan-Gao-230

 

对考生的基本要求

欢迎有志于学术研究,对科研有浓厚兴趣的考生报考我的博士与硕士项目。考生的专业为机械、土木、材料、物理(理论计算)或相关专业,或具有相近的研究经验、背景、方法,并且对理论建模、计算、机理探索抱有浓厚兴趣。具有一定编程基础(Python、Matlab、C++等),以及有限元、分子动力学计算软件(MOOSE、COMSOL、LAMMPS等)使用经验者优先。具有保研资格或成绩优异者优先;
联系方式

Email: yuan_gao@hust.edu.cn